
Scorpion: A Modular Sensor Fusion Approach for
Complementary Navigation Sensors

Kyle Kauffman1, Daniel Marietta2, John Raquet3, Daniel Carson4, Robert C. Leishman5,
Aaron Canciani6, Adam Schofield7, Michael Caporellie8

Abstract—There is a great need to decrease our reliance on
GPS by utilizing novel complementary navigation sensors. While
a number of complementary navigation sensors have been stud-
ied, each one has trade-offs in availability, reliability, accuracy
and applicability in various environments. The development of
a robust estimator therefore requires the integration of many
diverse sensors into a sensor fusion platform. Unfortunately, as
the number of sensors added to the system grows larger, so does
the difficulty of developing a sensor fusion solution that optimally
integrates them all into a single navigation estimate. In addition,
a sensor fusion solution with many sensors is susceptible to sensor
failures, modeling errors, and other phenomena which can cause
degradation of the fusion solution.

In this paper, we propose an open architecture for sensor
fusion that allows for the development of modular navigation
filters, sensor integration strategies, and integrity algorithms.
The primary goal of this architecture is to allow for the rapid
development of a novel complementary PNT sensor, fusion
strategy, or integrity algorithm without modification of any other
part of the system. In the future, this architecture will enable
the community to develop a repository of well-tested software
modules for sensor fusion which will in turn allow for the
iterative development of robust estimators, where users may
pick and choose the components that they wish to use from
the repository and build an estimator that fits their application.
In addition, domain experts in the community on a particular
sensor phenomenology may contribute modules to the repository
without needing to be experts in all aspects of sensor fusion. To
facilitate this community engagement, we have developed an open
source implementation of the architecture, which will be made
available as a reference implementation of the architecture and
approach. This paper details the design and overall approach to
the open architecture, as well as shows some experimental results
that were obtained by running flight data through the reference
implementation.

Index Terms—Bayesian Filter, Navigation, Kalman Filtering,
Open Architecture, Modular, Sensor Fusion

I. INTRODUCTION

Modern navigation systems are expected to provide high-
accuracy solutions in a wide variety of environments. The

1Kyle Kauffman, IS4S, Beavercreek, OH, USA,
kyle.kauffman@is4s.com

2Daniel Marietta, IS4S, Beavercreek, OH, USA,
daniel.marietta@is4s.com

3John Raquet, IS4S, Beavercreek, OH, USA, john.raquet@is4s.com
4Daniel Carson, IS4S, Beavercreek, OH, USA,

daniel.carson@is4s.com
5Robert C. Leishman, Air Force Institute of Technology, WPAFB, OH, USA,

robert.leishman@afit.edu
6Aaron Canciani, Air Force Institute of Technology, WPAFB, OH, USA,

aaron.canciani@afit.edu
7Adam Schofield, CCDC/C5ISR, APG, MD, USA,
8Michael Caporellie, CCDC/C5ISR, APG, MD, USA,

traditional integrated inertial navigation system (INS)/GPS
navigation system has limited ability to operate in many
common scenarios where GPS service is degraded or not
available, such as in urban canyons and indoors [1]. The
typical approach to allow these navigation systems to continue
operating under these conditions is to augment the GPS/INS
system with an additional set of sensors, which complement
the baseline system. The data extracted from these com-
plementary position, navigation, and time (PNT) sensors is
combined with the measurements from the GPS/INS system to
produce an optimal estimate of a navigation system’s location
via a sensor fusion algorithm.

Many complementary PNT sensors have been analyzed and
evaluated by the community, including light detection and
ranging (LIDARs), radars, electro-optical/infra-ref (EO/IR)
cameras, barometers, magnetometers, and many others [2]–
[8]. Each of these sensors has advantages as well as different
phenomena which limit their operation. For example, optical
sensors are easily obstructed by cloud cover or weather,
whereas radio frequency (RF) sensors can penetrate cloud
cover. The addition of a larger set of alternative sensors
allows the navigation platform to operate under more diverse
environmental conditions. Each additional sensor also provides
a source of new information about the vehicles’ navigation
solution, resulting in a lower error bound on the overall
navigation solution. Thus the combination of a wide variety of
sensors results in a better and more robust navigation solution.

Unfortunately, as the number of complementary sensors
added to a navigation system grows, so too does the com-
plexity of integrating them and developing a sensor fusion
algorithm that can process all of the available information.
Typically, sensor fusion algorithms are custom-developed for
a specific set of sensors. The addition of a new sensor to a
working navigation solution requires careful redesign of the
algorithm to optimally use the new information. Alternatively,
the new sensor’s measurements can be processed separately
from the primary sensor fusion algorithm into a measurement
that is easy to incorporate into the primary sensor fusion
algorithm, such as a position update. This approach, referred
to as loosely-coupled sensor fusion, limits the ability of the
sensor fusion algorithm to optimally extract information from
the sensor data.

In this paper, we present a modular approach to develop-
ing tightly-coupled sensor fusion algorithms that allows for
rapid algorithm development with a varying set of sensors.
With our approach, sensor modules are developed for each

complementary PNT sensor. Each sensor module describes
two things: 1) a mathematical model of the relationship of
the sensor data to the navigation system’s position, velocity,
attitude, and 2) a stochastic model of time-varying errors
necessary to capture the dynamic noise/errors inherent in the
sensor’s phenomenology. Crucially, a sensor module for a
particular sensor has an isolated mathematical model which
has no dependency on any other sensor existing in the system.
The module is specified without requiring knowledge of the
existence or non-existence of system states that are not related
to the module. In other words, the full details of the state vector
do not need to be known when the sensor module is defined.
This allows for a navigation system designer to rapidly change
the set of sensors they want in their system by selecting a set of
sensor modules that match the desired complementary sensor
set. Once a set of modules has been selected, the designer
can combine them with a core filtering algorithm to construct
a sensor fusion algorithm capable of incorporating data from
any of the sensors described by the selected modules. Like the
sensor modules, the core filtering algorithm is also pluggable,
and can be swapped out with another algorithm without
changing anything else in the system. For example, only one
line of code needs to be changed in order to switch from an
extended Kalman filter to an unscented Kalman filter.

The sensor module’s mathematical model is designed to
allow advanced tightly coupled integrations that would be
poorly represented by loosely-coupled approaches, such as
time difference of arrival (TDOA), differential carrier phase
integration, and scalar map-based geo-localization from non-
linear maps. Thus our modular approach achieves the per-
formance of tightly integrated approaches but without the
burden of manual integration required to build a traditional
non-modular tightly coupled sensor fusion algorithm.

In this paper, we will first describe the overall modular
approach and design. We’ll then discuss the design of the
sensor modules, including stateful representations, solution
integrity, computational performance, filter performance, and
model flexibility. Finally, we will develop the design and
integration of several common sensor modules, including
examples of their use.

II. BACKGROUND

A. Previous Work

Filtering is a well known approach to sensor fusion that has
been described in many textbooks [9]–[11] and articles [12]–
[14]. It is an active research area with many new techniques
being developed continuously [15]–[17]. Due to the level of
activity in the community developing new estimation filters,
an optimal filtering approach picked today for a particular
application may become quickly outdated.

There are many different communities which approach
sensor fusion from different perspectives. For example, the
robotics community often considers optimal estimation from
the perspective of Bayesian networks, often in the form of a
factor graph [18]. The navigation community often formulates
the problem of sensor fusion as a state observer in a control

system [9]. Throughout this paper, we will formulate the
problem as a state space representation consistent with [9],
but substituting a shorthand notation of xk for the value of
x at time tk , x(tk) and fk(...) for time-dependent functions
f(tk, ...).

There are several software libraries that are designed to
aid users in the development of a state estimator, such as
Bayes++ [19], the Matlab®Control System Toolbox®, and
others [20], [21]. These focus on providing well-tested im-
plementations of known algorithms to the user. For example,
pykalman [21] provides implementations of the unscented
Kalman filter (UKF) and extended Kalman filter (EKF). How-
ever, neither it nor the other libraries provide any facilities
to help a user merge two different filters written by two
different authors with two different sensor sets. In general,
a user wishing to perform this task would need to be an
expert in the design of both filters and manually merge the
two filters by careful analysis of their shared and distinct
states. In contrast, our proposed approach allows for filter
algorithms to be represented in a way that would allow a
user to take two independently developed sensor integration
strategies and merge them into a single filter without requiring
further analysis of the components.

B. Problem Formulation

The problem scope we are considering in this paper is
estimating a set of time-varying values x given a set of
observations z which contain information about x. Let xk be
the M × 1 vector representing the value of x at time tk and
zk be the N ×1 set of observations collected at time tk. Then
we assume that the way x changes from one time epoch to
the next is well-modeled by

xk = g(xk−1)+wk, wk
iid∼ N(0, σw) (1)

where E[wkwT
k] = Qk, and that the observations are related

to the state vector x by

zk= h(xk)+vk, vk
iid∼ N(0, σv) (2)

where E[vkvT
k] = Rk, g is the discrete-time propagation

function, h is the measurement model function, and w and
v are additive white Gaussian noise (AWGN) sources. Es-
timators that are able to estimate parameters modeled as in
(1) and (2) are known as AWGN filters. A designer’s goal
is to build filters that estimates x at time tk (xk) given the
measurement (zk) along with all prior received measurements
(zk−1, zk−2, . . .). As measurements come in, the filter will
continually refine the estimate of x using the new information,
calculating a new estimate xk+1 when the measurement zk+1

is received, and so forth.
In this paper, we will write x̂+

k to denote an estimate of
xk given the measurement at time k (zk) along with all prior
received measurements (zk−1, zk−2, . . .). We will write x̂−

k to
denote an estimate of xk given all prior received measurements
(zk−1, zk−2, . . .) but not including the measurement at time k
(zk).

III. MODULAR ARCHITECTURE DESIGN

A. Overall Approach

Our current goals for Scorpion are:
• Develop a framework for building estimators that is

flexible enough to support advanced research filters (ultra-
tightly coupled GPS, SLAM, etc.) but remains as simple
to use as possible. To do this, we support several levels
of problem model complexity, ranging from the standard
model (defined in II-B) to more complex models for
sampled filters and factor graphs. In this paper, we will
focus on the standard model.

• Build an architecture which enables both simulated/post-
processing of data sets and real-time processing of sensor
data.

• Enable different organizations to share modular code. If
the sensor API is fully modular, two organizations may
independently write their own modules for their own
sensors and then later add them both to the same filter.

• Let users test the effects of different sensor integration
strategies, filter types, or sensor fidelity by using plug-
gable modules.

• Allow access to the library from other software lan-
guages.

• Support filter deployment on performance-critical
projects, such as embedded platforms, massively parallel
distributed systems doing Monte Carlo analysis, and
everything in-between.

• Provide a set of off-the-shelf sensor modules for common
sensors than can be easily plugged into a new filter
project. This will eliminate the need to reinvent the
wheel for common problems like GPS/INS integration
or barometric aiding.

• Make the core classes abstracted to support usages other
than navigation (e.g. using a particle filter to estimate the
frequency jitter of a phase lock loop (PLL)).

It is important to note that standardizing sensor messages
falls outside the scope of Scorpion. This is accomplished by
different projects like All Source Positioning and Navigation
(ASPN).

B. Modular Filter Design

As discussed in Section II-B, the goal of a Scorpion
estimator solving the standard model is to estimate x at time
tk (xk) given the measurement (zk) at time tk along with all
prior received measurements (zk−1, zk−2, . . .).

A Scorpion user must therefore describe the following
things to have a fully described estimator:

• The number of states x in our state space, including both
quantities we wish to estimate and nuisance states that are
required to well-model the system but are not ultimately
of interest.

• The dynamics of how those states propagate forward in
time, described by g and w (known as the dynamics
model).

• The method by which a raw measurement zk is related
to the state vector x, described by h and v (known as the
measurement model).

• The filtering algorithm one wants to apply to compute
x̂+
k from x̂−

k (known as the update strategy)
• The filtering algorithm one wants to apply to compute

x̂−
k from x̂+

k−1 (known as the propagate strategy)
In order to facilitate modularity, Scorpion breaks down the

description of these quantities and algorithms into three main
pieces: StateBlocks, MeasurementProcessors, and filters.

A StateBlock represents a collection of states whose prop-
agation is not dependent on any states outside of the given
StateBlock. This means that the size of a StateBlock could
range from a single state (e.g. an estimate of a sensor bias) to
several states (e.g. the estimate of errors in an inertial solution).
StateBlocks are required to describe g and Qk (the discrete-
time process noise covariance matrix) for the set of states
contained in the block, given xk, tk, and tk+1. In addition,
to facilitate certain estimators, such as the EKF, which require
linearization points, the StateBlock provides the Jacobian of
g (first-order Taylor series expansion) which is denoted Φ.

A MeasurementProcessor represents the relationship of a
measurement to the state vector. It must produce zk, h(x),
and Rk (the measurement noise covariance matrix) from a raw
sensor measurement, xk, and Pk) (the covariance associated
with xk). Additionally, to facilitate certain estimators like
the EKF which require linearization points, the StateBlock
provides the Jacobian of h (first-order Taylor series expansion)
which is denoted H.

Finally, a StandardFilter is an iterative sensor fusion engine
which can take in a list of one or more StateBlocks and
MeasurementProcessors as well as the raw measurements from
a sensor to produce an estimate of all the states in every
StateBlock at the current time. It consists of two components:
a pluggable measurement update strategy (i.e. calculating x+

k

from x−
k) and a pluggable propagation strategy (i.e. calculating

x−
k from x+

k−1).
The basic interactions between these modules can be seen in

Fig. 1. This figure shows the flow of data which occurs when a
filter is sent a measurement. First the filter checks if the current
filter estimate is up to date with the measurement time of
validity. If it isn’t, then the filter requests the dynamics model
from each StateBlock and propagates the states by sending the
dynamics model to the filter’s propagation strategy.

Then, once the filter has a state estimate and covariance
at the same time as the raw sensor measurement, it finds
the MeasurementProcessor specified by the measurement. The
filter then sends the measurement and state information to the
MeasurementProcessor and requests the measurement model
from it that describes how the measurement relates to the
states. The filter then computes the updated state by passing
the measurement model to its update strategy, yielding the
estimator’s solution incorporating the measurement.

The data flow and operations performed by a StateBlock
can be seen in Fig. 2. The center column represents the State-
Block’s memory and processes, while the outside columns rep-

Fig. 1. Propagation and Update for a Single StateBlock and Single Mea-
surement Processor. Note that control flows along the path of the solid-line
arrows. The dotted line arrows indicate that the data computed at the origin
of the arrow is also used at the arrow’s destination.

resent externals inputs and outputs. The StateBlock is created
by the user supplying a series of inputs to the constructor. All
StateBlocks are required to specify their number of states and
a label, which is a unique identifier. This way multiple state
blocks can be instantiated and added to the same filter.

All StateBlocks are required to implement a “receiveAux-
Data” function. This serves as a channel for getting arbitrary
data into the StateBlock asynchronously after its construction.
For example, a StateBlock which models the errors in an
Inertial Navigation System’s solution might need to know
information about the solution to propagate the errors.

The core of the StateBlock is the “generateDynamics”
function. This function is called by the filter with a prior state
estimate, the time of the prior state estimate, and the time the

Fig. 2. Data Flow in a StateBlock

Fig. 3. Data Flow in a MeasurementProcessor

filter wants to propagate the state to. Some filtering problems
require the StateBlocks to be able to add states to the filter
or remove states from the filter. If a reference to the filter
was passed to the StateBlock, either through its constructor
on initialization or via auxiliary data, then the StateBlock can
modify the filter as needed.

The data flow and operations performed by a Measurement-
Processor can be seen in Fig. 3. Similarly to Fig. 2, the center
column represents the MeasurementProcessor’s memory and
processes, while the outside columns represent externals inputs
and outputs. All MeasurementProcessors must declare a label
(unique identifier) that can be used to refer to it, and a list of
labels of every StateBlock it is related to.

Like the StateBlock, the MeasurementProcessor must also
implement a “receiveAuxData” function to receive any addi-
tional information required by the MeasurementProcessor to
produce the measurement model.

The core of the MeasurementProcessor is the “generate-
Model” function. It is called by the filter with a raw mea-
surement and a set of propagated states. This set of states is

val filter = SensorEKF()

Listing 1: Creating an EKF.

determined by the list of StateBlock labels that the Measure-
mentProcessor declared it would update. This function pro-
cesses the sensor measurement and produces a measurement
model, which the filter uses to update the states. If needed, the
MeasurementProcessor may also add or remove StateBlocks
from the filter. For example, a simultaneous localization and
mapping (SLAM) processor might need to add states to track
new targets that it had just discovered in the latest raw sensor
data.

Note that directly specifying the set of StateBlock labels
that a measurement processor relates to has the potential to
couple a MeasurementProcessor to a particular filter design.
For example, consider the example given at the end of Section
II-A, wherein two users had built different filters but had
chosen different StateBlocks to represent their states in their
respective filters. If the StateBlocks chosen by the two users
are different, then a MeasurementProcessor would have to
choose which StateBlock it relates to in its list of StateBlock
labels, making it incompatible with the other StateBlock. Be-
cause our goal is to have modular MeasurementProcessors that
are independent of which state representations (StateBlocks)
are chosen to be in the filter, this is less than ideal. See Section
III-D for our solution to decoupling MeasurementProcessors
for the particular StateBlocks loaded into a filter.

C. Example: Estimating Altitude

We will now illustrate how the Scorpion approach applies
to PNT estimation with an example. Consider the problem
of estimating the altitude of a vehicle. Suppose we have a
altimeter sensor which gives us a measurement of the altitude
but which contains a bias. In order to estimate the altitude we
could model two states: one for the altitude itself and one to
estimate the bias in the altimeter measurements. First we’ll
define an EKF, as shown in Listing 1.

“SensorEKF” is an implementation of the standard model,
and contains an implementation of both an update strategy
and propagate strategy. However, the filter initially contains
no state blocks or measurement processors, as it is up to the
user to decide the design of the filter by adding modules into
the filter. We will therefore define a StateBlock for our altitude
as shown in Listing 2.

This StateBlock inherits from the class “StateBlock”, which
means it is required to implement the “numStates” and “label”
properties and the “receiveAuxData” and “generateDynamics”
functions. In the constructor arguments, “label” is a string
which serves as a unique identifier or name of the StateBlock
and “Q” is a value specific to this StateBlock and sets the
sigma of the random walk.

Next we’ll consider the properties this StateBlock defines.
The value “numStates” is set to 1, indicating to the filter that
this StateBlock contains one state. For clarity and convenience
we have set a variable “Phi” to store the Jacobian of g(x), or
Φ.

class AltitudeState(override var label: String,
var Q: Double) : StateBlock {

override var numStates = 1
var Phi = mat[1.0]

override fun receiveAuxData(auxData: Any) {}

override fun generateDynamics(xhat: Matrix<Double>,
timeFrom: Timestamp, timeTo: Timestamp):
Dynamics {

val dt = timeTo.time - timeFrom.time

val Qd = mat[Q * dt]

fun g(xhat: Matrix<Double>){return Phi * xhat}

return Dynamics(g, Phi, Qd)
}

}

Listing 2: Sample Altitude StateBlock.

val altitudeStateBlock = AltitudeState("altitude", 10.0)
filter.addStateBlock(altitudeStateBlock)
filter.setStateBlockEstimate(mat[100])
filter.setStateBlockCovariance(mat[10])

Listing 3: Adding an Altitude StateBlock.

All StateBlocks are required to implement the method
“receiveAuxData”. This method allows the user to send the
state block arbitrary data. In this case the state block does not
need any additional data to compute the dynamics model so
it will not be used.

Finally, the StateBlock is required to implement “generate-
Dynamics”. This is the core function of the StateBlock which
generates the dynamics model for the filter so the filter can
propagate the state. Q is produced by multiplying “Q” by the
elapsed time. g(x) is defined as a function which, given xk,
returns Φxk. Since we previously defined Φ to be equal to 1,
the state estimate will not change over time when propagated.
Last, a dynamics model is constructed from these terms and
returned to the filter.

We have now fully described the StateBlock. Next, we can
create an instance of it and add it to the filter. By default the
estimate and covariance are initialized to zero. For the purpose
of this example we will assume that we have some a priori
information about about our altitude, which is that the initial
altitude estimate is 100 meters and covariance is 10 meters
squared. This is shown in Listing 3.

Next we will create a StateBlock to model the altimeter bias
as a random walk, as shown in Listing 4. This StateBlock is
very similar to the previous one. Since the bias is constant
and, by extension, the state covariance does not change during
propagation, there is no “Q” in the constructor and Qd is set
to a constant “0.1”.

We’ll again create an instance of this state block and add it
to the filter and set it to an initial covariance of 100, shown
in Listing 5. We have now described a set of states, including
their initial conditions and propagation model. Next we will
need to define a MeasurementProcessor to describe to the
filter how it can extract information from the raw altimeter
measurement, shown in Listing 6.

Similar to the StateBlock, the MeasurementProcessor needs

class ConstantBiasState(override var label: String):
StateBlock {

override var numStates = 1
var Phi = mat[1.0]
var Qd = mat[0.1]

override fun receiveAuxData(auxData: Any) {}

override fun generateDynamics(xhat: Matrix<Double>,
timeFrom: Timestamp, timeTo: Timestamp):
Dynamics {

fun g(xhat: Matrix<Double>){return Phi * xhat}

return Dynamics(g, Phi, Qd)
}

}

Listing 4: Sample Altitude Bias StateBlock.

val biasStateBlock = ConstantBiasState("altimeterBias")
filter.addStateBlock(biasStateBlock)
filter.setStateBlockCovariance(mat[100])

Listing 5: Adding Altitude Bias StateBlock.

its own unique identifier, which is “label”. The Measurement-
Processor, however, also needs the labels of the StateBlocks
which contain the states the MeasurementProcessor is updating
(in the interest of simplicity, for this example we are not using
aliasing– instead the MeasurementProcessor directly relates to
the StateBlock known to be already loaded into the filter).
This is set using the “stateBlockLabels” parameter in the
constructor.

The inputs to the “generateModel” function are a mea-
surement, the state estimate, and the state covariance for the
MeasurementProcessor to use when calculating its Measure-
mentModel. The covariance is unused in this Measurement-
Processor.

This measurement processor defines z as the altitude mea-
sured by the altimeter. H is a matrix which directly maps both
states to the measurement. h(x) is a function which, given
xk, returns Hxk. Last the measurement covariance matrix is
extracted from the measurement reported by the altimeter.

Now that we’ve defined the MeasurementProcessor, we need
to add it to the filter, shown in Listing 7.

We now have a filter that is modeling a set of states for
estimating altitude and which includes the necessary informa-
tion to incorporate measurements from a altimeter. We can

class AltitudeMeasurementProcessor(
override var label: String,
override var stateBlockLabels: Array<String>):
MeasurementProcessor{

override fun generateModel(meas: Measurement,
xhat: Matrix<Double>, P: Matrix<Double>):
MeasurementModel {

val z = meas.altitude
val H = mat[1, 1] // Creates a 1x2 matrix of ones
fun h(xhat: Matrix<Double>){return H * xHat}
val R = meas.variance

return MeasurementModel(z, h, H, R)
}

}

Listing 6: Sample Altitude MeasurementProcessor.

val altimeterProcessor = AltitudeMeasurementProcessor(
"altimeter", ["altitude", "altimeterBias"])

filter.addMeasurementProcessor(altimeterProcessor)

Listing 7: Initializing Altitude MeasurementProcessor.

val BARO_SIGMA = 10
altimeterMeasurement = Measurement("altimeter",

createAltitude(120.0, BARO_SIGMA * BARO_SIGMA,
Time(10.0)))

filter.update(altimeterMeasurement)

Listing 8: Incorporating an Altitude Measurement.

therefore send the filter a measurement and it will produce an
updated estimate using the measurement, shown in Listing 8.

The “altimeter” string tells the filter to send this measure-
ment to the measurement processor with the same label. We
create an measurement with given the altitude measurement
(“120.0”), covariance of the measurement (“BARO SIGMA *
BARO SIGMA”) and a time for which the measurement is
valid (“Time(10.0)”). In a real application the altimeter data
would be captured from the sensor instead of simulated as
we’ve done here.

When we created the filter it defaulted to an initial time
of 0.0 seconds. When we send the filter this measurement,
it will first propagate its states to 10 seconds then apply the
measurement as an update. We can the retrieve the updated
altitude and bias states by the method shown in Listing 9.

D. Aliasing

As discussed at the end of Section III-B, Measurement-
Processors having direct references to a specific set of State-
Blocks and the representation/layout of the states within those
StateBlocks leads to coupling between the MeasurementPro-
cessor and a particular state space representation. Consider
for example a MeasurementProcessor developed by a user
that assumes the filter contained a set of states representing
position in “latitude, longitude, altitude” (LLH) representation.
Now suppose another filter developer designed a filter to
estimate position using Earth-centered Earth-fixed (ECEF)
states instead. When the first user attempted to load their
MeasurementProcessor into the second developer’s filter, the
MeasurementProcessor would not find the set of states that it
required in the filter (LLH), and consequently would not be
compatible with the second developer’s filter.

In this section, we will define a new concept called “State
Aliases”, which allow MeasurementProcessors to operate in-
side of filters which do not have the states they expect to be
present. In the above example, an alias would be developed
that maps ECEF coordinates into LLH coordinates. Then,
the alias would be loaded into the filter. The filter would
now contain a concrete StateBlock, represented in ECEF
coordinates, and a virtual StateBlock, which contained the

val altitudeEst = filter.getStateBlockEstimate("altitude")
val altitudeCov = filter.getStateBlockCovariace("altitude")
val biasEst = filter.getStateBlockEstimate("altimeterBias")
val biasCov = filter.getStateBlockCovariace("altimeterBias")

Listing 9: Retrieve the updated altitude and bias states.

same position as the concrete one but represented in LLH. The
LLH position solution is directly computed from the ECEF
StateBlock, and thus it is just an alias for the concrete block,
not a new StateBlock with its own sets of estimates. How-
ever, MeasurementProcessors are free to depend on aliased
(virtual) StateBlocks, which decouples the implementation of
MeasurementProcessors from StateBlocks.

Next we’ll develop the mathematical model for our aliasing
approach. In order to incorporate a set of measurements
represented by the vector z into a filter, the user must be
able to relate the measurements to the state vector. Assuming
independent, zero-mean AWGN, the measurement function
that relates N states to M measurements takes the form

zk = hk(xk) + vk (3)

with the M ×N measurement matrix defined as the matrix of
partial derivatives of h with respect to x

Hk(x̂
−
k) ,

∂hk(x)

∂x

∣∣∣∣
x=x̂−

k

(4)

Suppose that a user has a previously developed measure-
ment function

zk = gk(yk) + vk (5)

written against a state vector y that they wish to incorporate
into a MeasurementProcessor, where y is a set of states related
to x by some arbitrary function s() such that

yk = sk(xk) (6)

As noted in the introduction of this section, to incorporate
this model into a filter using a state representation x without
aliasing, the user would need to adapt g(y) to relate to x
instead. Alternatively, they could create a StateBlock repre-
senting y and adjust any other modular elements of the system
to work with y as well. In either case, the model would still be
coupled to a specific state representation, but aliasing allows
the incorporation of the model in its original form without this
coupling.

To perform aliasing the user constructs a VirtualStateBlock
class which enables a real StateBlock to be converted into
an alternate representation. A simple VirtualStateBlock im-
plementation that just scales a 1-element StateBlock, such as
might be done for a conversion of units used for a particular
state, is shown in Listing 10.

Each instance of this class possesses a label target by
which it is referenced, as well as the label current of the
concrete StateBlock it converts. In other words, this class
transforms a StateBlock from the current representation to
some target representation. When some filter element requests
a StateBlock with the target label, the filter looks for a Vir-
tualStateBlock with this label and passes the actual StateBlock
estimate and covariance values through the convert function
and returns the result to the requesting element. Listing 11
demonstrates how to add an instance of the VirtualStateBlock
shown in Listing 10 to a sample setup.

class ScaledVsb(VirtualStateBlock):
def __init__(self, c, t, s):

self.current = c
self.target = t
self.scale = s

def convert(self, ec):
ec.estimate *= self.scale
ec.covariance *= self.scale**2
return ec

def jacobian(self, x):
return array([[self.scale]])

Listing 10: Sample Scaling VirtualStateBlock.

filter = SensorEKF(start_time)
Actual block the filter will maintain
block = Single('real')
filter.addStateBlock(block)

vsb = Scaled('real', 'scaled', 0.5)
my_filter.addVirtualStateBlock(vsb)

Can now do either
filter.getStateBlockEstimate('real')
filter.getStateBlockEstimate('scaled')

Measurement can now be taken against
aliased state
proc = SingleProcessor('proc', 'scaled')
filter.addMeasurementProcessor(proc)

Listing 11: VirtualStateBlock Usage.

Continuing with the example of a user provided measure-
ment function gk(yk), we show how the extended Kalman
filter update equations are modified to allow substitution of
g(y) for h(x) . First we recall the standard EKF update
equations as presented in [?]:

x̂+
k = x̂−

k + K(zk − hk[x̂
−
k]) (7)

P+
k = P−

k − KkHkP
−
k (8)

Kk = P−
k HT

k[HkP
−
k HT

k + Rk]
−1 (9)

with
Hk , H[tk; x̂

−
k] (10)

Beginning by substituting (6) into (5) and setting equal to
(3) we obtain

hk(xk) = gk[sk(xk)] (11)

and therefore from (4)

Hk(x̂
−
k) ,

∂gk(sk(xk))

∂x

∣∣∣∣
x=x̂−

k

(12)

which is evaluated via the chain rule to get

Gk(x̂
−
k) = Hk(x̂

−
k) =

∂g

∂y

∂y

∂x

∣∣∣∣
x=x̂−

k

(13)

In (13) ∂g
∂y is provided directly by the user model, and ∂y

∂x
is just the Jacobian matrix of the aliasing function which
is supplied separately to the filter, each of which can be
independently evaluated. All that remains is to substitute (11)
and (13) into (7), (8) and (9). Letting

Gk(ŷ
−
k) =

∂g

∂y
(14)

and
Sk(x̂

−
k) =

∂y

∂x
(15)

we obtain

x̂+
k = x̂−

k + Kk(zk − gk[sk(x̂
−
k)]) (16)

P+
k = P−

k − KkGkSkP
−
k (17)

Kk = PkS
T
k GT

k [GkSkP
−
k ST

k GT
k + Rk]

−1 (18)

Unfortunately, the efficacy of a VirtualStateBlock is bound by
the same constraints that apply to the filter in which it is used.
Aliasing the covariance matrix in a linearized filter like an
EKF is performed using the Jacobian of the aliasing function,
so such a transformation is only valid to first order. Certain
operations, like setting the initial conditions of a VirtualState-
Block are also not possible due to the fact that the transform
functions may not be invertible. Despite these limitations, for
StateBlocks which are approximately linearly related aliasing
can lower the coupling between MeasurementProcessors and
StateBlocks.

E. Advanced Filters

One of the goals of Scorpion is to support the building of
a library of filters, similar to the capabilities of other navi-
gation libraries mentioned in Section II-A, but also including
much more advanced filter types such as factor graphs and
Monte-Carlo methods. In order to incorporate these filters
into scorpion, the standard model, described in Section II-B,
is augmented with several more advanced models, which
model more advanced filtering models such as sampled state
representations. These advanced models are out of scope for
this paper, however due to the modular nature of Scorpion the
advanced filters which implement more advanced filter models
also implement the standard model. It is therefore possible
to formulate the problem according to the linearized AWGN
assumptions of Section II-B but still utilize a filter that uses
a more advanced model then an EKF or UKF. In order to
interact with one of these more advanced filters, one often must
utilize a few additional methods outside of the set of methods
that are defined in the standard model. In this section, we
will demonstrate the usage of the Rao-Blackwellized Particle
Filter [22] (RBPF) implementation included in Scorpion via

filter.markAsParticle("pinson15", listOf(0,1))

Listing 12: Marking States as Particles.

val filter = SensorRBPF(numPart = 5_000)

Listing 13: Setting Particle Number in RBPF Constructor.

the standard model and a few additional methods to configure
the filter.

The RBPF is able to estimate systems with states that
have arbitrarily non-linear dynamics and measurement models
as long as it has access to a proportionally large number
of particles. Thus, the RBPF trades computational efficiency
for the ability to handle problems that are intractable for a
linearized filter such as the EKF. As an example, the RBPF
could be used on a problem with the following measurement
equation:

zk = h(xk) + wk (19)

where w is additive white Gaussian noise. The RBPF could
not be used with the following measurement equation:

zk = h(xk)wk (20)

Where w is multiplicative white Gaussian noise. The RBPF
could also not be used on a problem with the following
measurement equation:

zk = h(xk) + wng,k (21)

where wng,k is non-Gaussian noise.
States in the RBPF default to standard Gaussian states.

This indicates that the states are propagated and updated
with standard Kalman Filter operations. States are marked as
particles based on their state block name. For every state block
in which you wish to mark particles, you must make a separate
state marking function call. Along with the state block name
you must provide the state marking function with a list of
states to mark as particles. This list references the states within
the state block only. The first state in a given state block is 0,
the second is 1, etc. Listing 12 would mark the first two states
of the pinson15 state block as particle states. This command
would remain the same even if there were multiple state blocks
added to the filter, because the list only references states within
the named state block.

Particle filters often need more tuning than traditional filters
to achieve best performance. There are several tuning param-
eters built into the RBPF:

• Number of Particles
• Single Jacobian Mode
• Resampling Threshold
• Jitter
The number of particles is a constructor parameter for the

RBPF. The default is 10,000. Computational time increases
roughly linearly with the number of particles. Higher di-
mensional filtering problems will require more particles than
low dimensional problems. Setting the number of particles is
shown in Listing 13.

val filter = sensorRBPF(calcSingleJacobian = true)

Listing 14: Setting Jacobian Parameter in RBPF Constructor.

filter.resamplingThreshold = 0.8

Listing 15: Resampling Threshold.

The RBPF uses both Kalman Filter equations as well as
particle operations. When using Kalman filter equations the
filter needs both measurement model Jacobians as well as
dynamics model Jacobians. These Jacobians are linearizations
of the measurement model or dynamics model about a point.
In the RBPF, this point can either be the filter mean, leading
to a Single Jacobian or an individual particle state, leading
to N Jacobians, where N is the number of particles. Based
on the interaction of the particle states and Gaussian states,
using a single Jacobian may be exactly equivalent to using
N Jacobians. Other times it is not exact but close enough to
make no practical difference in filter performance. The user
selects which mode to operate with using a named parameter
in the constructor. This is illustrated in Listing 14.

Particle filters tend to accumulate the majority of their
weight in just a few particles. This problem is called sample
degeneracy and is what necessitates the resampling step of a
particle filter. Once a particle filter resamples, particles with
low weight are removed, and copies of existing high weight
particles are created. This leads to a second particle filtering
issue called sample impoverishment. This occurs when par-
ticles lose diversity due to many particles sharing the exact
same value. Resampling is required to stop sample degeneracy
but resampling too often leads to sample impoverishment.
The resampling threshold is a single number between 0 and
1 which decides how often to resample. Resampling less
often helps reduce sample impoverishment. The resampling
threshold can be changed as shown in Listing 15.

The default value is 0.75 and the filter will throw an error
if the number is not between 0 and 1.

Jitter is an Ad-Hoc method to address the problem known
as sample impoverishment. Jitter adds white Gaussian noise to
the filter states after the resample step of the particle filter. The
amount of noise to add is a tuning parameter chosen by the
filter designer. An example code snippet is shown in Listing
16. This example adds white Gaussian noise with a variance of
5.0 to the third state (index 2) of the block “stateBlockLabel”

For multiple states we can use a mapping shown in Listing
17. By default no jitter is added to any states after a resample
step.

filterRBPF.addJitter("stateBlockLabel", 2, 5.0)

Listing 16: Adding Jitter, Method 1.

filterRBPF.addJitter("stateBlockLabel", mapOf(2 to 5.0,
3 to 10.0))

Listing 17: Adding Jitter, Method 2.

Fig. 4. An integrity framework using Scorpion’s modular capability to build
isolated filters to testing and evaluation of complementary PNT sensors.

F. Integrity Framework

While complementary PNT sensors are often used to aug-
ment GPS/INS with the goal of increasing the accuracy of the
navigation solution, the addition of many new sensors opens
the solution up to errors caused by sensor failure, modeling
error, or other phenomena which affect these new sensors. It
is therefore undesirable to incorporate arbitrary new sensors
into a sensor fusion solution until the inputs have first been
validated.

One of the benefits of using a modular architecture like
Scorpion to build filters is that it allows for rapid development
of filters with different integration strategies and sensor sets.
While this capability is useful for building custom filters for
a specific sensor platform, it can also be leveraged to build
multi-model adaptive estimators (MMAE). We can use this
capability to build a MMAE framework for testing the validity
of new complementary PNT sensors added to the system.

Fig. 4 illustrates the configuration of a MMAE integrity
monitor framework that uses the modularity of Scorpion to
build isolated filters that test and evaluate complementary PNT
sensors. The sensor data is intercepted by a integrity manager,
which creates a bank of filters internally as needed. When
new sensors are added to the system, the integrity manager
can add additional filters to the bank to evaluate the statistical
properties of a filter which incorporates the new sensor. Each
filter has a separate isolated set of MeasurementProcessors and
StateBlocks so that the filters do not interfere with each other.

The integrity manager can include arbitrary logic inside of
it to decide when to allow new complementary sensors being
tested in the MMAE filter bank to be added to the estimate
that is produced the output. A modular integrity manager
has been previously developed and integrated into Scorpion
[23]. This manager makes the algorithm used to evaluate,
correct, reject, and integrate new sensors into the various filter
banks pluggable, and thus is a modular implementation of
the integrity manager shown in Fig. 4. Please see [23] for
more information on the details of the integrity framework
implementation.

IV. RESULTS

In this section we show how one can create and modify
filters to test various configurations on a given problem set.
In this example we compare how an EKF, UKF and Rao-
Blackwellized PF behave when used to process various subsets
of GPS position, altitude and angle-to-feature measurements
to correct a free-running inertial. Actual experimental flight
test sensor data is used to generate the results.

In the first example each filter is supplied with a 15-state
Pinson-style StateBlock that models position, velocity, attitude
and inertial sensor bias errors, and a MeasurementProcessor
capable of ingesting angles to known ground features and
generating position and attitude updates. All initial conditions
were identical in each scenario. In the case of the particle
filter, the tilt errors were configured as particle states and only
1000 samples were used.

In lines 2-4 of Listing 18, we select one of the filters to
use. On line 7 we initialize our selected StateBlock, the first
argument being a String label (ps) by which we can reference
the states, and add it to the filter in line 8. Line 9 is the creation
of the MeasurementProcessor, which is supplied with a label
for itself (fp) and the label of the StateBlock(s) it will update.
It is also then added to the filter.

At this point each module may be supplied with any
additional information it may need. For example, StateBlocks
can be supplied with initial state estimates and covariance, or
a MeasurementProcessor may require information about how
a sensor is installed relative to the vehicle. There are bespoke
functions for some common operations (line 12), and catch-all
giveStateBlockAuxData and giveMeasurementProcessorAux-
Data methods that allow arbitrary information to be passed
to a StateBlock or MeasurementProcessor, which will contain
logic on how to interpret that data. In all cases, information
supplied to the filter is routed to the destination module using
the label.

Once all elements have been initialized, the filter is ready
to process data. As sensor data is received, it is packaged
with a module label for the filter to ingest and passed through
the appropriate function; filter updates will be passed to the
’update’ function, time-varying module parameters such as
linearization points through giveStateBlockAuxData. In this
example we are receiving angles to ground features as sensor
updates, and the StateBlock we supplied is an error-state (as
opposed to whole-state) representation. The MeasurementPro-
cessor must generate a model that maps the inertial error states
to the whole valued sensor measurements; to do so it must
have knowledge of the reference trajectory generated by the
inertial at the time the sensor measurement was produced. The
MeasurementProcessor therefore requires that the sensor mea-
surement be paired with the appropriate reference trajectory
point, as in line 16.

Fig. 5 shows a snapshot of the difference between the
filter corrected position (error state plus inertial) along the
local North axis and a reference solution provided by another
system. After a period of free-running inertial during which

Can freely swap between any of these
filter = SensorEKF(start_time)
filter = SensorUKF(start_time)
filter = SensorRBPF(start_time, 1000)

Create modules and add to filter
block = PinsonBlock('ps', imuModel())
filter.addStateBlock(block)
proc = FeatureProcessor('fp', 'ps')
filter.addMeasurementProcessor(proc)
Init with e.g., covariance, lever arms
filter.setStateBlockCovariance('ps', cov)

For each measurement received...
filter.propagate(sensor_meas.time)
paired = PairedPva(sensor_meas, ins)
filter.update(Measurement('fp', paired))

Listing 18: Sample Code for Filter Setup

360 380 400 420 440 460

Time (s)

−40

−30

−20

−10

0

10

20

30

40

N
or
th

P
o
si
ti
o
n
E
rr
or

(m
)

EKF North Error (m)

EKF North 1σ (m)

UKF North Error (m)

UKF 1σ (m)

PF North Error (m)

PF 1σ (m)

Fig. 5. Filter Comparisons, Angle Measurements Only.

no filter updates were supplied, at approximately 380 seconds
into the data the filters begin receiving the angle updates.

As mentioned in the intro to this section, we are not limited
to just angle measurements; this data set also contains other
position data. Assume we wanted to modify the previous
example to also incorporate the altitude measurements. We
can do so with only two additional lines added to the filter
initialization, as shown in Listing 19.

All that remains is to format the altitude sensor data into a
Measurement tagged with the processor label al and pass to
the update function. The results of this process are shown in

proc2 = AltitudeProcessor('al', 'ps')
filter.addMeasurementProcessor(proc2)

Listing 19: Adding an Altitude MeasurementProcessor

360 380 400 420 440 460

Time (s)

−40

−30

−20

−10

0

10

20

30

40

N
or
th

P
o
si
ti
o
n
E
rr
or

(m
)

EKF North Error (m)

EKF North 1σ (m)

UKF North Error (m)

UKF 1σ (m)

PF North Error (m)

PF 1σ (m)

Fig. 6. Filter Comparisons, Angle and Altitude Measurements.

Fig. 6.
The point of these examples is not to show that any given

setup outperforms another or is optimally tuned, but rather
that by varying only three lines of code six different filter
configurations were tested. Filter modification is not required
to accommodate any modules, existing or new; all changes are
confined to the ’controller’ level.

V. CONCLUSION

In this paper, we developed a modular architecture for the
integration of complementary PNT sensors. We showed that
the architecture allows for the integration of advanced and
classical filtering algorithms as well as a wide breadth of
sensor integration techniques. We further discussed how the
modular design allows for the development of high-integrity
solutions, by using an MMAE integrity manager that builds
modular filters to test and evaluate sensor models and errors.
Finally, we built a software reference implementation of the
architecture and demonstrated that it functioned properly on
real-world experimental flight data.

REFERENCES

[1] K. Fisher and J. F. Raquet, “Precision position, navigation, and timing
without the global positioning system,” Air & Space Power Journal,
vol. 25, no. 2, pp. 24–33, 2011.

[2] M. Rabinowitz and J. Spilker J.J., “A new positioning system using
television synchronization signals,” Broadcasting, IEEE Transactions on,
vol. 51, no. 1, pp. 51–61, 3 2005.

[3] G. Shippey, M. Jonsson, and J. N. B. Pihl, “Position Correction Using
Echoes From a Navigation Fix for Synthetic Aperture Sonar Imaging,”
Oceanic Engineering, IEEE Journal of, vol. 34, no. 3, pp. 294–306, 7
2009.

[4] C. Toth, D. A. Grejner-Brzezinska, and Y.-J. Lee, “Terrain-based nav-
igation: Trajectory recovery from LiDAR data,” in Position, Location
and Navigation Symposium, 2008 IEEE/ION, 5 2008, pp. 760–765.

[5] K. Kauffman, J. Raquet, Y. Morton, and D. Garmatyuk, “Real-time
UWB-OFDM radar-based navigation in unknown Terrain,” IEEE Trans-
actions on Aerospace and Electronic Systems, 2013.

[6] M. J. Veth, R. K. Martin, and M. Pachter, “Anti-Temporal-Aliasing
Constraints for Image-Based Feature Tracking Applications With and
Without Inertial Aiding,” Vehicular Technology, IEEE Transactions on,
vol. 59, no. 8, pp. 3744–3756, 10 2010.

[7] A. Varshavsky, M. Y. Chen, E. de Lara, J. Froehlich, D. Haehnel,
J. Hightower, A. LaMarca, F. Potter, T. Sohn, K. Tang, and I. Smith, “Are
GSM Phones THE Solution for Localization?” in Mobile Computing
Systems and Applications, 2006. WMCSA ’06. Proceedings. 7th IEEE
Workshop on, 4 2006, pp. 20–28.

[8] T. D. Hall, “Radiolocation using AM broadcast signals: The role of
signal propagation irregularities,” in Position Location and Navigation
Symposium, 2004. PLANS 2004, 4 2004, pp. 752–761.

[9] P. S. Maybeck, Stochastic models, estimation, and control, vol. 1, 1979.
[10] S. Haykin, Ed., KALMAN FILTERING AND NEURAL NETWORKS.

John Wiley & Sons, Inc, 2001.
[11] R. Brown and P. Hwang, Introduction to Random Signals and Applied

Kalman Filtering, 3rd ed. Hoboken, NJ, USA: Wiley, 2002.
[12] G. Welch and G. Bishop, “An Introduction to the Kalman

Filter,” In Practice, vol. 7, no. 1, pp. 1–16, 2006. [Online].
Available: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.79.
6578&rep=rep1&type=pdf

[13] Z. H. E. Chen, “Bayesian Filtering: From Kalman Filters to Particle
Filters, and Beyond,” Statistics, vol. 182, no. 1, pp. 1–69, 2003.
[Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/download?doi=
10.1.1.107.7415&rep=rep1&type=pdf

[14] S. J. Julier and J. K. Uhlmann, “Unscented Filtering and Nonlinear
Estimation,” Proceedings of the IEEE, vol. 92, no. 3, pp. 401–422, 2004.

[15] S. C. Patwardhan, S. Narasimhan, P. Jagadeesan, B. Gopaluni, and
S. L. Shah, “Nonlinear Bayesian state estimation: A review of
recent developments,” Control Engineering Practice, vol. 20, no. 10,
pp. 933–953, 2012. [Online]. Available: http://dx.doi.org/10.1016/j.
conengprac.2012.04.003

[16] F. Castanedo, “A review of data fusion techniques,” The Scientific World
Journal, vol. 2013, 2013.

[17] F. Auger, M. Hilairet, J. M. Guerrero, E. Monmasson, T. Orlowska-
Kowalska, and S. Katsura, “Industrial applications of the kalman filter:
A review,” IEEE Transactions on Industrial Electronics, vol. 60, no. 12,
pp. 5458–5471, 2013.

[18] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. The MIT
Press, 2006.

[19] M. Stevens, “Bayes++ Bayesian Filtering,” 2020. [Online]. Available:
http://bayesclasses.sourceforge.net/Bayes++.html

[20] R. R. Labbe, Kalman and Bayesian Filters in Python.
Online, 2018. [Online]. Available: https://github.com/rlabbe/
Kalman-and-Bayesian-Filters-in-Python

[21] D. Duckworth, “pykalman,” 2012. [Online]. Available: https://pykalman.
github.io/

[22] T. Schön, F. Gustafsson, and J. Nordlund, “Marginalized Particle Filters
for Mixed Linear/Nonlinear State-space Models,” Tech. Rep.

[23] J. D. Jurado, “AFIT Scholar AFIT Scholar Autonomous and
Resilient Management of All-Source Sensors for Autonomous and
Resilient Management of All-Source Sensors for Navigation Assurance
Navigation Assurance Recommended Citation Recommended Citation,”
Tech. Rep. [Online]. Available: https://scholar.afit.edu/etd/2361

